python – Cost of len() function

The Question :

313 people think this question is useful

What is the cost of len() function for Python built-ins? (list/tuple/string/dictionary)

The Question Comments :

The Answer 1

379 people think this answer is useful

It’s O(1) (constant time, not depending of actual length of the element – very fast) on every type you’ve mentioned, plus set and others such as array.array.

The Answer 2

144 people think this answer is useful

Calling len() on those data types is O(1) in CPython, the most common implementation of the Python language. Here’s a link to a table that provides the algorithmic complexity of many different functions in CPython:

TimeComplexity Python Wiki Page

The Answer 3

93 people think this answer is useful

All those objects keep track of their own length. The time to extract the length is small (O(1) in big-O notation) and mostly consists of [rough description, written in Python terms, not C terms]: look up “len” in a dictionary and dispatch it to the built_in len function which will look up the object’s __len__ method and call that … all it has to do is return self.length

The Answer 4

76 people think this answer is useful

The below measurements provide evidence that len() is O(1) for oft-used data structures.

A note regarding timeit: When the -s flag is used and two strings are passed to timeit the first string is executed only once and is not timed.

List:

$ python -m timeit -s "l = range(10);" "len(l)"
10000000 loops, best of 3: 0.0677 usec per loop

$ python -m timeit -s "l = range(1000000);" "len(l)"
10000000 loops, best of 3: 0.0688 usec per loop

Tuple:

$ python -m timeit -s "t = (1,)*10;" "len(t)"
10000000 loops, best of 3: 0.0712 usec per loop

$ python -m timeit -s "t = (1,)*1000000;" "len(t)"
10000000 loops, best of 3: 0.0699 usec per loop

String:

$ python -m timeit -s "s = '1'*10;" "len(s)"
10000000 loops, best of 3: 0.0713 usec per loop

$ python -m timeit -s "s = '1'*1000000;" "len(s)"
10000000 loops, best of 3: 0.0686 usec per loop

Dictionary (dictionary-comprehension available in 2.7+):

$ python -mtimeit -s"d = {i:j for i,j in enumerate(range(10))};" "len(d)"
10000000 loops, best of 3: 0.0711 usec per loop

$ python -mtimeit -s"d = {i:j for i,j in enumerate(range(1000000))};" "len(d)"
10000000 loops, best of 3: 0.0727 usec per loop

Array:

$ python -mtimeit -s"import array;a=array.array('i',range(10));" "len(a)"
10000000 loops, best of 3: 0.0682 usec per loop

$ python -mtimeit -s"import array;a=array.array('i',range(1000000));" "len(a)"
10000000 loops, best of 3: 0.0753 usec per loop

Set (set-comprehension available in 2.7+):

$ python -mtimeit -s"s = {i for i in range(10)};" "len(s)"
10000000 loops, best of 3: 0.0754 usec per loop

$ python -mtimeit -s"s = {i for i in range(1000000)};" "len(s)"
10000000 loops, best of 3: 0.0713 usec per loop

Deque:

$ python -mtimeit -s"from collections import deque;d=deque(range(10));" "len(d)"
100000000 loops, best of 3: 0.0163 usec per loop

$ python -mtimeit -s"from collections import deque;d=deque(range(1000000));" "len(d)"
100000000 loops, best of 3: 0.0163 usec per loop

The Answer 5

24 people think this answer is useful

len is an O(1) because in your RAM, lists are stored as tables (series of contiguous addresses). To know when the table stops the computer needs two things : length and start point. That is why len() is a O(1), the computer stores the value, so it just needs to look it up.

Add a Comment